REVISED SYLLABUS AS PER CIRCULARNO.53_Circular_2021

SUBJECT – CHEMISTRY

SUBJECT CODE 043

CLASS 12TH (2021-22)

Prescribed Books:

- 1. Chemistry Part -I, Class-XII, Published by NCERT.
- 2. Chemistry Part -II, Class-XII, Published by NCERT.

ZUZI-ZZ CLASS XII TETII-I				
S.No	UNIT	Periods	MAR KS	
1	Solid State	8	10	
2	Solutions	8		
3	p-Block Elements	7	10	
4	Haloalkanes and Haloarenes	9	15	
5	Alcohols, Phenols and Ethers	9		
6	Biomolecules	8		
	TOTAL	49	35	

SYLLABUS FOR SESSION 2021-22 CLASS XII Term-I

UNIT I:

Solid State: Classification of solids based on different binding forces: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea). Unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, packing efficiency, voids, number of atoms per unit cell in a cubic unit cell, point defects.

KEY WORDS- Ferrimagnetic, Anti ferromagnetic, Diamagnetic, Paramagnetic, 13- 15 compounds, 12- 16 compounds ,Doping, Frenkel defect Schottky defect, Radius ratio, Packing efficiency, Coordination number, pseudo solids, anisotropy, unit cell, imperfections, F-centre.

PRACTICAL: Preparation of Inorganic Compounds

- Preparation of double salt of Ferrous
- Ammonium Sulphate or Potash Alum.
- Preparation of Potassium Ferric Oxalate.

ACTIVITY: To show packing in solids by making 3D MODELS using bangles, balls, coins, clay etc.

UNIT II:

Solutions: Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, Raoult's law, colligative properties - relative lowering of vapour pressure, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties.

KEY WORDS-Osmotic pressure, Depression of freezing point, Elevation of boiling point Azeotropes, Raoult's law, Henry's Law, Normality, Molarity, Molality, Mole fraction, ideal and non-ideal solution, colligative property, molal elevation constant or ebullioscopic constant, molal depression constant or molal cryoscopic constant., endo-osmosis, exo-osmosis, isotonic solutions.

PRACTICAL: Determination of concentration/ molarity of KMnO₄ solution by titrating it against a standard solution of:

- i) Oxalicacid,
- ii) Ferrous AmmoniumSulphate (Students will be required to prepare standard solutions by weighing themselves).

ACTIVITY: Crossword puzzle.

UNIT III:

p Block Elements: Group -15 Elements: General introduction, electronic configuration, occurrence, oxidation states, trends in physical and chemical properties; Nitrogen preparation properties and uses; compounds of Nitrogen: preparation and properties of Ammonia and Nitric Acid.

Group 16 Elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties, dioxygen: preparation, properties and uses, classification of Oxides, Ozone, Sulphur -allotropic forms; compounds of Sulphur: preparation properties and uses of Sulphur-dioxide, Sulphuric Acid: properties and uses; Oxoacids of Sulphur (Structures only).

Group 17 Elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; compounds of halogens, Preparation, properties and uses of Chlorine and Hydrochloric acid, interhalogen compounds, Oxoacids of halogens (structures only).

Group 18 Elements: General introduction, electronic configuration, occurrence, trends in physical and chemical properties, uses.

KEY WORDS- Oxidation state, Atomic size, Ionization enthalpy ,Electro negativity , Disproportionation reaction, Aerosols Electro negativity, Hydrogen bonding ,Inert pair effect, bonding., interhalogens, pseudohalides.

PRACTICAL:Chromatography

- i) Separation of pigments from extracts of leaves and flowers by paper chromatography and determination of Rfvalues.
- Separation of constituents present in an inorganic mixture containing two cations only (constituents having large difference in Rf values to be provided).

ACTIVITY: (MNEMONIC ACTIVITY)

UNIT IV:

Haloalkanes and Haloarenes: Haloalkanes: Nomenclature, nature of C–X bond, physical and chemical properties, optical rotation mechanism of substitution reactions.

Haloarenes: Nature of C–X bond, substitution reactions (Directive influence of halogen in monosubstituted compounds only).

KEY WORDS: Achiral, alkyl halides, allylic halides, ambident nucleophiles, carbocation, dextrorotatory, diazonium salts, electrophillic substitution, elimination reaction,,grignard reagent, optically active,stereo centre.

PRACTICAL: Tests for the functional groups present in organic compounds:

• Unsaturation

ACTIVITY: Multiple choice questions (QUIZIZZ)

UNIT V:

Alcohols, Phenols and Ethers: Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only), identification of primary, secondary and tertiary alcohols, mechanism of dehydration.

Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophillic substitution reactions, uses of phenols.

Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses.

KEY WORDS :Acidity, Aromatic ring, Benzylic alcohols, Cumene, Dehydrogenation, Electrophillic aromatic substitution, Polyhydric compounds, Vinylic alcohol,ferric chloride test for phenols. iodoform test, lucas test.

PRACTICAL: Tests for the functional groups present in organic compounds:

- alcoholic,
- phenolic

Biomolecules: Carbohydrates - Classification (aldoses and ketoses), monosaccahrides (glucose and fructose), D-L configuration

Proteins -Elementary idea of - amino acids, peptide bond, polypeptides, proteins, structure of proteins - primary, secondary, tertiary structure and quaternary structures (qualitative idea only), denaturation of proteins.

Nucleic Acids: DNA and RNA

KEY WORDS: Aldopentose, amino acids, amylopectin, amylase, animal starch, oligosaccharides, polysaccharides denaturation of proteins, globular proteins ,nucleoside, nucleotide, peptide linkage, Zwitter ion.

PRACTICAL: Characteristic tests of carbohydrates, fats and proteins in pure samples and their detection in given food stuffs.

ACTIVITY: Crossword puzzle

PRACTICALS

Term I: A 15-mark Practical would be conducted under the supervision of subject teacher/ internal examiner. This would contribute to the overall practical marks for the subject.

OR

In case the situation of lockdown continues until Nov-Dec 2021, a *Practical Based Assessment (pen- paper) of 15 marks* would be conducted at the end of Term I at the school level and marks would be submitted by the schools to the Board. This would contribute to the overall practical marks for the subject.

Term-I Evaluation Scheme

S. No	Practical	Marks
1.	Volumetric Analysis	4
2.	Salt Analysis	4
3.	Content Based experiment	2
4.	Class record and viva(Internal Examiner)	5
	TOTAL	15

(1) Volumetric analysis (4 marks)

Determination of concentration/ molarity of KMnO4 solution by titrating it against a standard solution of:

- i. Oxalic acid,
- Ferrous Ammonium Sulphate (Students will be required to prepare standard solutions by weighing themselves).

(2) Salt analysis (Qualitative analysis) (4 marks)

Determination of one cation and one anion in a given salt. Cations- Pb²⁺, Cu²⁺, As³⁺, Al³⁺, Fe³⁺, Mn²⁺, Ni²⁺, Zn²⁺, Co²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Mg²⁺, NH4⁺ Anions – (CO3)²⁻, S²⁻, NO2⁻, SO3²⁻, SO4²⁻, NO3⁻, Cl⁻, Br⁻, I⁻, PO4³⁻, C2O4²⁻, CH3COO⁻ (Note: Insoluble salts excluded)

(3) Content Based Experiments (2 marks)

- A. Chromatography
 - i. Separation of pigments from extracts of leaves and flowers by paper chromatography and determination of Rf values.
 - ii. Separation of constituents present in an inorganic mixture containing two cations only (constituents having large difference in Rf values to be provided).
- B. Characteristic tests of carbohydrates, fats and proteins in pure samples and their detection ingiven foodstuffs.

S.No	UNIT	No. of Period s	MAR KS
1	Electrochemistry	7	
2	Chemical Kinetics	5	
3	Surface Chemistry	5	13
4	d-and f-Block Elements	7	
5	Coordination Compounds	8	9
6	Aldehydes, Ketones and Carboxylic Acids	10	13
7	Amines	7	
	TOTAL	49	35

SYLLABUS FOR SESSION 2021-22 CLASS XII Term-II

UNIT VI:

Electrochemistry: Redox reactions, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, Relation between Gibbs energy change and EMF of a cell, conductance in electrolytic solutions, specific and molar conductivity, variations of conductivity with concentration, Kohlrausch's Law, electrolysis.

KEY WORDS : Cathodic protection, Molar conductivity, Electro chemical series, Equivalent conductance, Specific conductance. strong and weak electrolytes, Electrochemical cell, Electrolytic cell, conductance, specific conductance.

Chemical Kinetics: Rate of a reaction (Average and instantaneous), factors affecting rate of reaction: concentration, temperature, catalyst; order and molecularity of a reaction, rate law and specific rate constant, integrated rate equations and half-life (only for zero and first order reactions).

KEY WORDS Differential rate law, Integrated rate equation ,The rate law, Rate determining step , Activated complex , Activation energy , Half- life of a reaction Order of a reaction , Molecularity , Rate constant, threshold energy, law of mass action.

PRACTICAL: Volumetric analysis

Determination of concentration/ molarity of KMnO4 solution by titrating it against a standard solution of:

i. Oxalic acid,

ii. Ferrous Ammonium Sulphate

(Students will be required to prepare standard solutions by weighing themselves).

ACTIVITY: Multiple choice questions (QUIZIZZ)Activity on coloured chart papers using colour pens and pencils to do graphical representations of average rate and instantaneous rate

UNIT VII:

Surface Chemistry: Adsorption - physisorption and chemisorption, factors affecting adsorption of gases on solids, colloidal state: distinction between true solutions, colloids and suspension; lyophilic, lyophobic, multi-molecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation.

KEY WORDS: Peptization , Multimolucular, Lyophillic ,Lyophobic, Multimolucular colloid , Macromolecular colloid, Sol and Gel

,Emulsions ,Hardy- Schulze rule, Brownian movement Electrophoresis, Tyndall effect,gold number,coagulation,adsorbent,adsorbate,adsorption isobar.

PRACTICAL: Salt analysis (Qualitative analysis) (4 marks)

Determination of one cation and one anion in a given salt.

Cations- Pb²⁺, Cu²⁺, As³⁺, Al³⁺, Fe³⁺, Mn²⁺, Ni²⁺, Zn²⁺, Co²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Mg²⁺, NH4⁺ Anions – (CO3)²⁻, S²⁻, NO2⁻, SO3²⁻, SO4²⁻, NO3⁻, Cl⁻, Br⁻, I⁻, PO4³⁻, C2O4²⁻

,CH3COO⁻ (Note: Insoluble salts excluded) **ACTIVITY**: Crossword puzzle

UNIT VIII:

d and f-Block Elements: General introduction, electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first row transition metals – metallic character, ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds, alloy formation.

Lanthanoids - Electronic configuration, oxidation states and lanthanoid contraction and its consequences.

KEY WORDS- Actinoid contraction, Magnetic moment, Reducing agent, oxo anions, Amphoteric nature, Disproportionation reaction, Interstitial compounds Enthalpies of atomization, Lanthanoid contraction, Baeyer's reagent, coinage metals.

PRACTICAL: TO analyze the salt for one acidic and one basic radical.

ACTIVITY: Multiple choice questions (QUIZIZZ)

UNIT IX:

Coordination Compounds: Coordination compounds -Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds. Bonding, Werner's theory, VBT, and CFT.

KEY WORDS :Co-ordination compounds, Co-ordination Complex, Coordination Sphere, Double salts,Crystal field splitting energy(CFSE), Diamagnetic, Ligand, Chelate, Chelating effect, Coordination number,Ligand.

PRACTICAL: Content based experiment

Preparation of Inorganic Compounds

Preparation of double salt of Ferrous Ammonium Sulphate or Potash Alum. Preparation of Potassium Ferric Oxalate.

ACTIVITY: Multiple choice questions(QUIZIZZ)

UNIT X:

Aldehydes, Ketones and Carboxylic Acids: Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties, mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes, uses.

Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.

KEY WORDS: Aldehydes, Phenol, benzoic acid, Benzophenone, Acetophenone, Benzaldehyde, Acetaldehyde, Electrophilic substitution, Inductive Effect, Aldol Condensation, Alkyl benzenes, Bacyer's reagent, Electron donating groups, Electron withdrawing groups, Ozonolysis, Polarity, Cannizzaro reaction, cross-aldol condensation, tollen's test, Fehling's test, estertest, acetal. cyanohydrin, ketal, oxime, imine.

Amines

Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, identification of primary, secondary and tertiary amines.

KEY WORDS Zwitter ion Aniline Nitration Ammonolysis Primary, secondary and tertiary amines. Aromatic amines Quaternary ammonium salts, acylation, ammonolysis, carbylamines.

PRACTICAL:

Tests for the functional groups present in organic compounds: aldehydic, ketonic, carboxylic and amino (Primary) groups.

ACTIVITY: Crossword puzzle

PRACTICAL EVAUATION:

Term II: At the end of Term II, **a 15-mark Practical** would be conducted under the supervision of Board appointed external examiners. This would contribute to the overall practical marks for the subject.

OR

In case the situation of lockdown continues beyond December 2021, a *Practical Based Assessment (pen-paper) of 10 marks and Viva 5 marks* would be conducted at the end of Term II jointly by the external and internal examiners and marks would be submitted by the schools to the Board. This would contribute to the overall practical marks for the subject.

TERM-II Evaluation Scheme

S. No	Practical	Marks
1.	Volumetric Analysis	4
2.	Salt Analysis	4
3	Content Based Experiment	2
4	Project Work and Viva(Internal and External Both)	5
	TOTAL	15

1) Volumetric analysis (4 marks)

Determination of concentration/ molarity of KMnO4 solution by titrating it against a standard solution of:

- i. Oxalic acid,
- ii. Ferrous Ammonium Sulphate

(Students will be required to prepare standard solutions by weighing themselves).

2) Salt analysis (Qualitative analysis) (4 marks)

Determination of one cation and one anion in a given salt.

Cations- Pb2+, Cu2+, As3+, Al3+, Fe3+, Mn2+, Ni2+, Zn2+, Co2+,

Ca²⁺, Sr²⁺, Ba²⁺, Mg²⁺, NH4⁺ Anions – (CO3)²⁻ , S²⁻ , NO2 ⁻ ,

SO3 $^{2\text{-}}$, SO4 $^{2\text{-}}$, NO3 $^{\text{-}}$, Cl $^{\text{-}}$, Br $^{\text{-}}$, I $^{\text{-}}$, PO4 $^{3\text{-}}$, C2O4 $^{2\text{-}}$

,CH3COO⁻ (Note: Insoluble salts excluded)

3) Content based experiment

- A. Preparation of Inorganic Compounds
 Preparation of double salt of Ferrous Ammonium
 Sulphate or Potash Alum. Preparation of Potassium
 Ferric Oxalate.
- B. Tests for the functional groups present in organic compounds:
 Unsaturation, alcoholic, phenolic, aldehydic, ketonic, carboxylic and amino (Primary) groups.

General Instructions for Investigatory Project

In Chemistry the students of class XII are supposed to conduct a scientific investigations involving laboratory testing and collecting information from other sources. This project is assessed as a part of practical examination at the end of year.

At the outset, teachers must map appropriate competencies or learning outcomes with real world problems (projects) that are age appropriate for their students. Students in consultation with their teacher finally determine the project question for them depending upon their interest and proclivity. A project should ideally arise out of the need felt by the student. Students explore their areas of interest and narrow down their ideas to a testable hypothesis or problem question.

For example: Abdul waits for summers as his favourite fruit watermelon is available in plenty. This year he noticed that every time he bought a watermelon its colour was dark red and was exceptionally sweet from inside. This never happened in earlier years. Some watermelons would be sweet some would not. Abdul were surprised by this observation and worried if the fruit was adulterated. He thought of conducting a test to find out if fruits and vegetables available in his locality were adulterated. He reviewed articles and papers on adulteration and found out simple tests to check adulteration at home. Abdul conducted the test and shared his results with his friend and teacher. He developed a small manual to help other check adulteration in fruits.

There are many issues in our immediate surroundings which need to be addressed. Keen observation will help identify the problem.

Before developing a problem question, students must do research on topics and find out what other people have already done in the selected area to avoid repetition. During this phase, students should be encouraged to record the reference of every bit of information they got from different sources. After developing problem question, students should write down precise testable hypothesis and design an experiment or procedure to test their hypothesis by collecting and analysing the data followed by writing conclusion and limitation of the study. Students must also develop a timeline and checklist about accessibility required, safety of to resources

experiment/procedure, harmlessness of experiments to environment, organisms and other people. Teacher must ensure that it is doable within a specified period of time and available resources and is appropriately challenging to a particular student (neither be very complex or longer nor be very easy and short). It should not culminate into finding information from a book or website.

A project could have the following outline:

- 1. **Statement of Problem-** A clear statement of the problem/need that has given rise to the project
- 2. **Objectives**-General and specific objectives of topic

- 3. **Introduction**-The introduction should describe the relevance of problem or why the problem is the most appropriate for your inquiry. It should also describe previously known facts about your problem question with proper bibliography. Introduction towards end briefly includes hypothesis your hypothesis and the method to test it.
- 4. **Problem question** (specific, concrete questions to which concrete answers can be given) and/ or hypotheses
- 5. **Methods/Procedures** Methodology (will your research be based on survey, an experimental investigation, historical study, ethnographic study or content analysis).Methods describe the experiments proposed or the observations planned to make and the detailed process of analysis of data/observations. Methods proposed should be feasible and be able to adequately answer problem question.

6. Materials/Resources required

7. Observations/Data gathered

Using the procedures mentioned in introduction, experiments should be conducted and data should be recorded. Interesting things that happened during the conduct of experiments should also be recorded.

8. Analysis of data and discussion of result

Data should be interpreted in terms of proposed hypothesis. Data should be tabulated and interpreted with the help of graphs if possible. The interpretation should be done in an honest manner even if it does not support proposed hypothesis.

9. **Conclusion** Reporting and writing up the report

Discussion of new learning from the study may be covered under conclusion. This may have possible suggestions for future studies.

10. Limitation of the study

The limitations of the study are those features of design or procedure that might have affected the interpretation of the results of study. The limitations are alternatively interpreted as flaws or shortcomings due to flawed methodology, observations, small number of experiments or non-peer reviewed nature of study etc.

11. Bibliography

PARAMET ER	Exemplary (4)	Accomplish ed (3)	Developing (2)	Beginner (1)
ER Factual informati on Sources	Content covers the research well Multiple sources (6 or more) used (library, books, interview with people, different	ed (3) Content from all eras but has few inaccuraci es Many sources (4- 5) used (Books, websites, blogs)	(2) Content does not cover all eras and has few inaccuracies Few sources used (2-3)	(1) Content does not cover all eras and is historically inaccurate Relied on only one source
Data collection	unferent websites, blogs etc.) Collected data from a large random sample (50 people or more from different age group, gender, social status) OR collected data for different samples and at least 5 reading for each set of experiment	Collected data from a fairly large random sample (30 -50 people from different age group, gender, social status) OR collected data for different samples and 3 reading for each set of experiment	Collected data from a small random sample (20 people from different age group, gender, social status) OR collected data for one sample and 3-5 readings	Collected data from a small sample (10 or less people) OR collected data for one sample and 1-2 readings

Rubric for Assessment of Project

		-		
	In correlation	In	Not in	Not in
Interpreta	with data and	correlation	correlation	correlation
tions and	aim of the	with data	with data	with data
conclusio	project. Clear	and aim of	but in	and aim,
n	conclusions	the project.	correlation	No
-	based on	Conclusions	with the	conclusion
	findings	not based on	aim	S
		findings	Random	
		-	conclusions	-
	Daily entries	Most of the	Daily	Random
	with details of	entries done	entries	entries
Journal	4100000010110	with details	without	
	and	of	details	
	brainstorming	discussions		
	sessions with	with		
	the	the teacher		
	teacher.			
	Exceptionally	Attractive,	Information	Presentatio
	attractive,	organized	is organized	n is
	organized	sequentiall	sequentially	confusing.
Project	sequentially	y and	and	There is no
report	and logically,	logically,	logically	sequence.
	creatively	presented	but not in	
	presented	some data	an	
	with data and	and	attractive	
	clear	conclusion	manner.	
	conclusions	S	Random	
			Data	
			without	
			conclusions	
	Sites all	Most of	Few sources	Uses
Academi		the	cited	other
С	gives due	sources		people's
Honesty	credits	cited		ideas
				without
				giving
				credit